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The intrinsic dimensionality of the MODEL-I representing the system of the classes of stable and 
unstable complex hydrides of the type ABHnD4_n (A = alkali metal, B = IIIB atom, D = ligand 
and n = number of hydride atoms) has been estimated to be eleven. The proposed intrinsic di
mensionality determination is based on Karhunen- Loeve expansion followed by a relatively 
simple procedure for the formation of near optimum feature set. 

Chemical structure represents a highly concise information source for data analysis 
methods including those dealing with classification - pattern recognition methods. 
However, the crucial problem is the encoding the structure into an appropriate input 
for pattern recognition analysis with minimum loss of discriminatory information. 
Formal structural data (descriptors) have been frequently used for these purposesl- 3 . 

Recently, the encouraging results of pattern recognition classification of a set of 
complex hydrides into stable and unstable ones have been described4 using MODEb-l 
(ref. S

). This model was constructed mainly from physically significant structural data 
combined with some descriptors for more complicated formula fragments, ct. the 
ligands. Such a type of model could be generally advantageous from the points of 
view of availability as well as accuracy of fundamental physical data and the possible 
use of the analysis results in a theoretical interpretation of the system under consider
ation. 

In this paper the compression of discriminatory information of the MODEL-l 
by reduction of dimensions up to the intrinsic one is described. The reduction is 
checked by the performance of the novel classification method described in our pre
ceding paper6. 

Methodical Approach 

Initially 5 
, 49 available variables (Table I) have been included in the original hypothe

sis, 8 ·of which for alkali metal, 8 for the central lIIB atom and 11 for each ligand. 
The prevailing portion of them (82%) bear a simple physical character. Only remaining 
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TABLE I 

Reduction of the MODEL-l Dimensionality by the Deletion of Linearly Dependent Features 
The deleted variables or features are marked by - and the remaining features by R. The first 

ligand atom is abbreviated by FLA. 

49" 2Sb 23 11 10 
(variables) (features) (Dm) 

Alkali metal A 

Melting point 
Boiling point 
Density 
Atomic radius R R 
Covalent radius R 
Ionic radius R R 
1 st ionization energy R R R R 
Electronegativity R 

Central atom B 

Melting point R R R R 
Boiling point R 
Density R R R R 
Atomic radius R R 
Covalent radius R 
Ionic radius R 
1st ionization energy R 
Electronegativity R R 

The first ligand D 

Molecular weight R R R R 
No of chain atoms R R R 
B.p.ofDH 
Density of DH 
1t-Donor or acceptor R R 
No of substituents on FLA R R R R 
Average electro negativity of these 
Covalent radius of FLA 
Ionic radius of FLA 
1st ionization energy of FLA 
Electronegativity of FLA R R R R 

The second ligand D 

Molecular weight R R 
No of chain atoms R R 
B.p.ofDH 
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TABLE I 

(continued) 

49a 28b 23 11 10 
(variables) (features) (Dm) 

Density of DR 
1t-Donor or acceptor R R R R 
No of substituents on FLA R R R R 
Average electronegativity of these 
Covalent radius of FLA 
Ionic radius of FLA 
1st ionization energy of FLA 
EJectronegativity of FLA R R 

The third ligand atom D 

Molecular weight R R R R 
No of chain atoms R R 
B.p.ofDR 
Density of DR 
1t-Donor or acceptor R R R R 
No of substituents on FLA R R 
Average electronegativity of these 
Covalent radius of FLA 
Ionic radius of FLA 
1st ionization energy of FLA 
Electronegativity of FLA R R 

Measure of reliability 72 85 111 56 

Measure of correctness, % 89 90 83 82 

.. Ref.s ; b ref.4. 

18% of the variables are descriptors characterizing the bulkiness of the ligands. Re
cently\ 28 discriminatory relevant variables (features) have been selected (Table I) 
by means of the combined criterion based on Wold's discrimination and modelling 
powers 7 irrespective of their possible dependence. This fact provided a possibility 
of an additional dimensionality reduction. We found that the sequential approach 
consisting of the determinations of 1) features in the first step and 2) linearly inde
pendent features in the second step can be efficient in the compression of discrimi
natory information. 
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In the initial step variables proposed by the hypothesis must be ordered according 
to their ability to represent correctly the clustering of the objects under consideration 
into the corresponding classes. The evaluation of the classification ability of individual 
variables might be performed by any suitable mathematical approach without con
sidering whether the variables are linearly dependent or not. Recently one such eva
luation method was used4 and it is shortly outlined here for the purpose of informa
tion. It is based on the combined use of discrimination and modelling powers. The 
discrimination power (here P~) (Eq. (2)) has been formulated by Wold 7 in connection 
with his SIMCA method based on the disjoint principal components analogy model7 ,8 

which may be in principle expressed by relation (1) 

A 

Yik = (Xi + L {JiaO.k + elk, (1) 
8=1 

where Yik are experimental data, (Xi' {Jia and Oak are parameters, eik is residual, i, k and a 
are indexes for the variable, the object and the component and A is the number of 
components {JiOk' The discrimination power represents a relevance measure of a given 
variable i by comparing the variance of the residuals in the cases when all trained pat
terns (prototypes) are in the "false" classes (s2+) with that when the prototypes are 
in their "own" class (S2), 

Q Q nr Q 

s~+ls~ = L L: L (e\~~)2/(Q - 1) L: L: (eWrY, (2) 
q=l r=l k=l r=l k=l 

q*r 

Q is the number of classes and e\~~ represents the residuals after fitting a k-th object 
of class r to class q. Thus the discrimination power represents a measure of the im
portance of individual variables from the classification point of view. The second me
sure - modelling power4

,7 - (Eq. (3b)) is based on ratio Vi (Eq. (3a)) of the variance 
of the SIMCA-residuals e and the variance of the data Y of the training matrix for the 
variable i. 

(3a) 

However, the relevance is indirectly proportional to the value of Vi' Therefore. 
I-Vi, modelling power p~ is used having values close to one for highly relevant va
riables and close to zero for slightly relevant ones. 

(3b) 

The modelling power is a measure of the significance of the individual variable for 
the similarity within the classes. It may also be considered as a difference of the degree 
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of organization (entropy) in a clustered and a non-clustered system. Generally spea
king, the Wold's discrimination power P~ emphasizes interclass information and 
the Wold's modelling power p~ the intraclass one. For pattern recognition purposes 
the combined use of both powers as a relevance criterion for feature determination 
was successfully applied in a man-computer interactive manner4. 

The Determination of Linearly Independent Features 

The fundamental characteristic of each system is the minimum number of mutually 
independent variables which exactly define all objects in the system. The set oflinearly 
independent variables can be represented, geometrically, as an orthogonal basis 
which defines the dimensionality of the system under study. If the system is composed 
of classes of similar objects, then the dimensionality estimation for pattern recognition 
purposes can be carried out more economically using only a set of features prelimi
narily selected by any appropriate method. Hencefore, for pattern recognition analy
sis, the intrinsic dimensionality of the system, D', can be defined as a minimum num
ber of linearly independent features. Real systems are usually very complex and can 
only be approximated by a model. The quality of the model depends on the number 
of included features from the total hypothetical set of them as well as on their relative 
relevancies. Hence, the quality depends on the level of a priori knowledge available 
in the initial stage of the analysis - hypothesis formulation. The intrinsic dimension
ality of the model, Dm, is thus not generally identical with D' and it only approximates 
D' to some extent. 

In chemistry, different techniques have been used for the determination of the 
number of linearly independent variables by the computation of the rank of data. 
matrix (refs9

•
10 and the references cited therein). We use here the technique of the 

estimation of the number of non-zero eigenvalues, A, from the second order moment 
matrix based on Karhunen-Loeve expansion (rotation)11.12. The Karhunen-Loeve 
rotation carried out by the Jacobi procedure results in a set of A's which are arranged 
in an increasing order. However, eigenvalues (the variances in the transformed space) 
indicate only the number of linearly independent features and do not represent any 
of them explicitly. The "come-back" into measurement space is not trivial and can 
be achieved by e.g. the rotational part of factor analysis13 . Here, a simple stepwise 
deletion of features is used for this purpose. The approach is based on the idea that 
the deletion of the feature corresponding to the largest component of the eigenvector 
related to the lowest eigenvalue, Amln, minimizes the loss of information. Geometri
cally, the idea can be demonstrated in three-dimensional space by Fig. 1. 

Unfortunately, the Karhunen-Loeve approach does not account for the discrimi
natory effect14 because it works with the matrix of whole system without considering 
the clustering. However, in the case of minimum eigenvalues, Amln, approaching to zero 
this "insensivity" does not represent any serious problem because practically no 
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information is lost. It is mostly preserved in the set of features after such a deletion. 
On the other hand, in the case with Amin =4= 0 some information (including discri
minatory information) is lost. Hence, for pattern recognition purposes any additional 
unique deletion of feature is not possible. Nevertheless, a remarkable increase in the 

R 

percentual loss of information (100A~lnIL A.~i) where R is the dimension after i-th 
r=l 

deletion) may be considered as an indication of the absence of strongly linearly de-
pendent features. Hencefore, such an increase can be accounted for as a criterion 
for the determination of the model intrinsic dimensionality Dm as defined above. 
Naturally, a remarkable deteriorating of classification performance should be ex
pected if any deletion below Dm is carried out. In the present paper, this effect is 
studied by means of the classification method described elsewhere6

• 

EXPERIMENTAL 

Algorithm 

Our approach towards formation of a near optimum set of linearly almost independent features 
can be summarized by the following algorithm: 1) Data for the prototypes are auto scaled so that 
the mean be zero and the variance be one. 2) The covariance matrix is formed from the auto scaled 
data. 3) The rotation from feature space into eigenvalue space is performed by the Jacobi proce
dure. 4) A'S are arranged according to their values. 5) Amin is searched. 6) The eigenvector corres
ponding to the Amin is picked up. 7) The largest component of this vector is found. 8) The feature 
related to this component is delected. 9) The cycle is repeated until a significant increase of per
centualloss of information occurs. 

Data 

In the present study, the input data of complex hydrides are used as summarized in the "Data 
Base I" (ref.5). Analogously to the recent work4 , 115 complex hydrides are selected for the training 

FIG. 1 

Projection from Eigenvalue Space into Mea
surement Space 

Yi (i = 1, 2, 3) the original coordinates, 
Xi the coordinates after the Karhunen-Loeve 
rotation, • objects in class I, 0 objects in 
class 2. 
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procedure from the total set of 224 hydrides - 95 of them as stable prototypes and 20 as unstable 
ones. 

Computation 

Programs were writtl!n in the GIER ALGOL-III version of ALGOL-60. All calculations were 
carried out on the GIER computer in the Computer Centre of the Institute of Nuclear Research, 
Rez. Some procedures were translated into the machine code. 

RESULTS AND DISCUSSION 

Some representative results for dimensionality reduction from 28 features of the 
MODEL-l up to its intrinsic dimensionality Dm = 11 are summarized in Table I. 
As expected, the deletion of five features corresponding to the largest components of 
eigenvectors related to A = 0 did not cause any significant changes in the measure of 
correctness6 nor in the measure of reliability6. 

Because of rather poor population of prototypes in the class of unstable complex 
hydrides, additional deletion of features for Amin :::::: 0 was made. It was performed in 
a stepwise way according to the increasing order of Xs. Such a dimensionality re
duction up to Dm = 11 gave rise to a very mild decrease (about 7%) in the measure 
of correctness only, while the measure of reliability even increased to some extent. 
This counter-intuitive result for the latter measure may provide an additional example 
of the "peaking phenomenon" discussed recently15 in connection with independence 
and dimensionality. 

Further deletion of the dimensionality of ten caused a more remarkable loss of 
information (above 1%) as well as a decrease of the measure of reliability6 (Fig~ ,2). 
We used these facts as an indication for Dm = 11 adjustment. It is worth of mention 
that the measure of correctness6 remained practically unchanged in this situation 

A 

~----------------------~30 

8 C 

'100 20 

3 , 

50 10 

30 

FlO. 2 

Relative Loss of Information and the Classi
fication Performance at Different Dimen
sionalities 

A the measure of correctness (%) 2, B the 
measure of reliability 3, C the relative loss 
of information (%) 1. 
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(Table I, Fig. 2). Generally, the preferential use of the measure of reliability will be 
probably more appropriate for the systems with closely joint classes, where the switch
ing around the discrimination boundary may be caused even by very low errors 
in the data. 

The further deletion up to single dimension gave values limiting to 50% for the 
measure of correctness and to one for the measure of reliability (Fig. 2). This clearly 
indicates the' nontriviality of the problem under study. 

For the structural fragments of the complex hydrides ABHnD4_n the near optimum 
set of eleven linearly independent features is shown in Table 1. The alkali metal A 
is represented in the ll-dimension~l (reduced) MODEL-l by the first ionization 
energy only. The central atom B is characterized by its melting point and density. 
This reduction is in a good agreement with recently discussed4 correlation of variables 
for A and B due to their relation in the periodic system. In monosubstituted hydrides 
ABH3D four features for the ligand D are included in the reduced MODEL-t, 
namely molecular weight, electro negativity of the first atom of the ligand, the number 
of substituents on this atom and, finally, the number of atoms in the ligand chain. 
Different sets of features were found for the ligands in di- and trisubstituted deriva
tives ABH2D2 and ABHD3. In the former case the ligands are characterized by the 
number of substituents on the first atom and by n-donor ability, in the latter case 
by n-donor ability and molecular weight. Thus, different sets of features have been 
found for a ligand in relation to the degree of substitution. 

Any quantitative physico-chemical interpretation of the above results is not simple 
and is not a subject of this study. On the other hand, this introductory study demon
strates that the selection of features in the pattern recognition analysis could serve 
as a sound decision tool in the treatment of a complex problem. 
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